
N O i FILE Copy
N

Princeton University

MAINTENANCE OF A MINIMUM SPANNING FOREST
IN A DYNAMIC PLANAR GRAPH

David Eppstein
Giuseppe F. Italiano

Roberto Tamassia
Robert E. Tarjan

Jeffery Westbrook
Moti Yung

CS-TR-243-90

January 1990

DTIC
Department ELECTE

MAY 15 1990

of 0i::
Computer Science

Approved for public relcau
Distribution Unlimited

Po 0 07 055

MAINTENANCE OF A MINIMUM SPANNING FOREST
IN A DYNAMIC PLANAR GRAPH

David Eppstein
Giuseppe F. Italiano

Roberto Tamassia
Robert E. Tarjan
Jeffery Westbrook

Moti Yung

CS-TR-243-90

January 1990

__TIC

Aooession For %7"

NTIS GRA&I 4 01 A 15 1990
Uanuned [0

DTIC TAB.

' ,Justifi catio

ByDistributi
on/

Availability Codes

Avail and/or
Dist Special A;1

STATEMENT "A" per Dr. Ralph Wachter
ONR/Code 1133
TELECON 5/14/90 VG

Maintenance of a Minimum Spanning Forest
in a Dynamic Planar Graph*

David Eppsteint Giuseppe F. Italianot Roberto Tamassia§

K Robert E. Tarjan Jeffery Westbrookll Moti Yung**

January 18, 1990

\ Abstract
We give efficient algorithms for maintaining a minimum spanning

forest of a planar graph subject to on-line modifications. The modifi-
cations supported include changes in the edge weights, and insertion

*Research supported in part by NSF grant CCR-88-14977, NSF grant DCR-86-05962,
ONR Contract N00014-87-K-0467, DIMACS (Center for Discrete Mathematics and Theo-
retical Computer Science) a National Science Foundation Science and Technology Center,
grant NSF-STC88-09648, and Esprit II Basic Research Actions Program of the Euro-
pean Communities Contract No. 3075. A preliminary version of this article appeared in
the Proceedings of the 1st ACM-SIAM Symposium on Discrete Algorithms, held in San
Francisco, CA, January 1990.

tComputer Science Laboratory, Xerox PARC, 3333 Coyote Hill Rd, Palo Alto, CA
94304. This work was done while the author was at the Department of Computer Science,
Columbia University, New York, NY 10027.

IDepartment of Computer Science, Columbia University, New York, NY 10027 and
Dipartimento di Informatica e Sistemistica, Universith di Roma, Rome, Italy. Partially
supported by an IBM Graduate Fellowship.

IDepartment of Computer Science, Brown University, Box 1910, Providence, RI 02912-
1910.

IDepartment of Computer Science, Princeton University, Princeton, NJ 08544, and
NEC Research Institute, Princeton, NJ 08540.

11 Department of Computer Science, Stanford University, Stanford, CA 94305. This work
done while the author was at the Department of Computer Science, Princeton University,
Princeton, NJ 08544.

**IBM Research Division, T. J. Watson Research Center, Yorktown Heights, NY 10598.

and deletion of edges and vertices. To implement the algorithms, we
develop a data structure called an edge-ordered dynamic tree, which
is a variant of the dynamic tree data structure of Sleator and Tarjan.
Using this data structure, our algorithms run in O(logn) time per
operation and 0(n) space. The algorithms can be used to maintain
the connected components of a dynamic planar graph in 0(log n) time
per operation. (

1 Introduction

Let G = (V, E) be an undirected planar graph with n = Il and m = El.
Let w(e) be a real-valued weight for each edge e. A minimum spanning
forest for G is a spanning forest (a set of spanning trees, one for each
connected component) that minimizes the sum of the weights of the edges
in the forest. A maximum spanning forest is defined analogously. We wish
to maintain a representation of a minimum or maximum spanning forest
in G while processing on-line a sequence of change weight(e, A) operations.

Such an operation adds real number A to the weight of the graph edge e.
In addition, we wish to support operations that change the structure of G,
such as the insertion and deletion of edges and vertices. Our representation
will allow us to answer queries such as whether an edge e is currently in
the minimum spanning forest.

Dynamic problems on graphs have been extensively studied. Several al-
gorithms have been proposed for maintaining fundamental structural infor-
mation about dynamic graphs, such as connectivity [10,11,16,24,26], tran-
sitive closure [18,19,20,21,22,33,23], and shortest paths [1,9,25,28,33]. Dy-
namic planar graphs arise in communication networks, graphics, and VLSI
design, and they occur in algorithms that build planar sul,,'i 'sions such as
Voronoi diagrams. Algorithms have been proposed for ma-i-- ing the em-
bedding of a planar graph [29] and for incremental planarity besting [2,3].
The dynamic minimum spanning tree problem has been considered by Spira
and Pan [28], Chin and Houck [7], Frederickson [11], and Gabow and Stall-
mann [12]. The best result is that of Frederickson, who gave an algorithm
based on "topology trees" that runs in O(v/m) time per operation on gen-
eral graphs, and O((log n) 2) time on planar graphs. As Frederickson notes,
the minimum spanning tree for a general graph being modified on-line by

2

edge additions alone can be maintained in O(log n) amortized or worst-case
time per operation, using the dynamic tree data structure of Sleator and
Tarjan [261. Gabow and Stallmann [12] improve Frederickson's bound for
planar graphs to 0(log n) time per operation for the case of a static graph
with changing edge costs. Their method also uses the dynamic tree data
structure.

In this paper we present data structures and algorithms for maintaining
a minimum spanning tree of an edge-weighted subdivision of the plane
subject to on-line modifications of the kind listed above. The subdivision
is allowed to contain loop edges or multiple edges, but no isolated vertices
(though these could easily be handled.) Our algorithms run in 0(m) space
and 0(log m) amortized time' per operation, where m is the number of
edges in the subdivision. We can maintain a minimum spanning forest
of an n-vertex planar graph G in time 0(log n) per update by using our
subdivision algorithms on an embedding of G in the plane. Our algorithms
are conceptually simple, improve on the result of Frederickson [11], and
extend the result of Gabow and Stallmann [12].

Our algorithms use the topological properties of the subdivision. To
modify the subdivision structure we use a pair of simple primitives from
which more complicated operations such as the insertion or deletion of edges
can be built. Each minimum spanning tree is maintained with a variant
of the dynamic tree data structure of Sleator and Tarjan [26,271 called
an edge-ordered dynamic tree. This data structure is used to represent
free trees in which for each vertex there is a total ordering of the incident
edges. It can support much the same operations as Sleator-Tarjan dynamic
trees, with the addition of operations to split and condense vertices w!ile
preserving the edge ordering. Depending upon the needs of the application,
this repertoire of operations can be used to test membership of 3,1 edge
in the spanning forest in 0(1) time, and to determine the spaiming tree
containing a given vertex, or find the edge of maximum or minimum weight
on the tree path between two vertices, in 0(log m) time. The edge-ordered
tree also finds use in the on-line planarity testing algorithm of Di Battista
and Tamassia [2,3]. Thus our data structure is fairly g-neral and powerful.

1The amortized cost of an operation is the cost of a worst-case sequence of operations
divided by the number of operations in the sequence. See [32] for a general discussion of
amortization.

3

The algorithms can be made to run in worst-case time O(log m) with the
biased tree implementation of dynamic trees [261.

The remainder of this paper is organized into four sections. In Section 2
we discuss the subdivision representation scheme of Guibas and Stolfi [14].
In Section 3 we consider the case of a subdivision with fixed structure
that is undergoing edge weight changes on-line. We describe in detail the
Gabow-Stallmann O(log m)-time algorithm for this restricted situation. In
Section 4 we introduce the two primitives used by Guibas and Stolfi to
modify planar subdivisions; these primitives provide a conceptually simple
way to describe more complicated modification operations. Finally, in Sec-
tion 5 we develop the edge-ordered dynamic tree, and use it to extend the
algorithm of Section 3 to run in a fully dynamic setting.

2 Planar Subdivisions and Their Represen-
tation

A subdivision S of the plane is a connected set of vertices and edges that
partition the plane into a collection of faces. S may have loop edges or
multiple edges between vertices. We are interested only in the topology of
5, i.e., the incidence relations between vertices, edges, and faces, and do
not consider the actual geometric positions of the vertices and edges. Let G
be a planar graph of n vertices. An embedding of G generates a collection
of subdivisions, one for each connected component of the graph. If G is
triconnected then the topological structure of its embedding is unique up
to mirror image [15, pp. 105], but in general there are multiple embeddings
possible for a given planar graph. The edges and vertices of a subdivi-
sion, however, constitute a unique graph or multigraph. Our algorithms
maintain subdivisions, and they take advantage of the topological relation-
ships among the subdivision's vertices, edges, and faces. In this section
we summarize the concepts and notation that we will use in dealing with
subdivisions. They are drawn primarily from the work of Guibas and Stolfi
in reference [14].

Each undirected edge e = {u, v} of the subdivision S can be directed in
two ways. If e is the directed version of e originating in u and terminating
in v, then sym(e) is the version of, -ted from v to u. Note that if e

4

is a loop edge, u and v are identical, but we may still define e and sym(e)
as oppositely directed versions of the same undirected edge. The operator
orig(e) gives the vertex at which directed edge e originates, and makes it
convenient to use directed edges to specify vertices of G. Note that since
the plane is orientable, it is possible to define in a consistent way the left
and right faces to which each directed edge e is adjacent.

Using the topological incidence relationship between edges and faces of
S, we define the dual graph G = (F, E*) [8,14,23]. Each face of S gives
rise to a vertex in F. Dual vertices f, and f2 are connected by a dual edge
e* whenever primal edge e is adjacent to the faces of S corresponding to f,
and f2. Note that G* can be embedded in the plane by placing each dual
vertex inside the corresponding face of S, and placing dual edges so that
each one crosses only its corresponding primal edge. This embedding is
called the dual subdivision S*. In simpler terms, the dual of a subdivision
is given by exchanging the roles of faces and vertices, and S and S* are
each other's dual. Figure 1 gives an example of a subdivision and its dual.

As in the primal subdivision, each undirected dual edge generates two
directed edges of S*; the sym and orig operators are extended to these
dual directed edges. The operator rot(e) gives the dual directed edge that
originates in the right face of e and terminates in the left face, i.e. it
is e rotated 900 counterclockwise. Similarly rot- 1 (e) is the directed dual
edge from the left face of e to the right face of e, i.e., edge e rotated 90'
clockwise. Note that rot(rot(e)) =sym(e) and sym(rot(e)) =rot-'(e). For
a given undirected edge e in the primal subdivision S, we denote the two
pairs of primal and dual directed edges by e0 , e, eC2 , e3 , where e0 is a primal
directed edge and ei+imod4 =rot(ei), 0 < i < 3. "

Within S and S* we can unambiguously establish a sense of counter-
clockwise rotation around a vertex. The notation next(e) refers to the edge
following e in counterclockwise order around orig(e). The edge ring of a
vertex v is a circular linked list of the directed edges originating at v, or-
ganized in counterclockwise order so that nezt(e) is the successor of e in
the edge ring. If v has only one incident undirected edge e, then its edge
ring contains the single directed edge e originating at v, and next(e) is e.
On the other hand, for a loop edge e both e and sym(e) belong to the edge
ring of vertex orig(e).

In reference [14], Guibas and Stolfi generalize these concepts to arbitrary

Figure 1: A subdivision (black) and its dual (grey).

6

two-dimensional manifolds, defihie the notion of an edge algebra on the set
of edges and operators, and prove interesting theorems about such edge
algebras. The reader is referred to their paper for more details.

3 Changing Edge Weights Only

We first consider the restricted problem in which the topology of S is fixed
and the only modification permitted is change weight(e, A). We give data
structures and algorithms to maintain a minimum spanning tree in the
graph induced by the vertices and edges of S. We then apply these algo-
rithms to the maintenance of a minimum spanning forest for a planar graph
G undergoing changes in edge weight, using the one-to-one correspondence
between the minimum spanning trees for an embedding of G and for G
itself. The approach used and the result obtained are due to Gabow and
Stallmann [12, Corollary 3.1], although they specified no details.

We work with both S and its dual S*. For each dual edge we define
w(e*) = w(e). The following lemma is the basis for the algorithm.

Lemma 1 Given a spanning tree T for S, let T" be the set of dual edges
{e* e is not in T }. Then T* is a spanning tree for S*.

Proof. Euler's formula for planar subdivisions, E = (V - 1) + (F - 1),
implies that IT*I = F - 1. Thus if T* contains no cycle, T" must be a
spanning tree for S*. Assume there is a cycle in T*. This cycle separates
the plane into two regions containing two sets of vertices. No edge of
T crosses the boundary between the two regions, implying that T is not
connected. But this contradicts the fact that T is a spanning tree. 0

Corollary 1 T is a minimum spanning tree for S if and only if T* is a
maximum spanning tree for S*.

Proof. If w(T) is the sum of the weights of the edges in T, and W is the
sum of the weights of all edges in S, we have that TV = w(T) + w(T*).
Thus w(T*) is maximized when w(T) is minimized. 0

Figure 2 gives an example of the primal and dual spanning trees for the
subdivision of Figure 1.

7

Figure 2: Primal and dual spanning trees for the subdivision
of Figure 1

8

The algorithm maintains T and T* in tandem. By Lemma 1, an edge
e is either an edge of T, or its dual e* is an edge of T*. In general, as
edge weights change, edges are driven out of one tree, and their duals are
driven into the other. Lemma 1 implies that after a change in edge weight,
correct updating of the primal spanning tree automatically results in correct
updating of the dual, and vice versa.

To perform the updates efficiently, we utilize the dynamic tree data
structure of Sleator and Tarjan [26,27]. Dynamic trees are designed to
represent a forest of rooted trees, each node of which has a real-valued
cost, under the following operations:

make node: Make a new tree node with no incident edges and an initial
cost of -00.

find cost(v): Return the cost of node v.

find root(v): Return the root of the tree containing node v.

find min(v) (find max(v)): Return the node of minimum (maximum) cost
on the path from v to r, the root of the tree containing v.

add cost(v, A): Add real number A to the cost of all nodes on the path
from v to r, the root of the tree containing v.

link(v, w): Add an edge from v to w, thereby making v a child of w in the
forest. This operation assumes that v is the root of one tree and w is in
another.

cut(v): Delete the edge from v to its parent, thereby dividing the tree
containing v into two trees.

evert(v): Make v the root of its tree by reversing the path from v to the
original root.

find parent(v): Return the parent of v, or null if v is the root of its tree.

find Ica(u, v): Return the least common ancestor of nodes u and v.

9

All the above operations can be performed in O(log n) amortized time
per operation and O(n) space, where n is the number of nodes in the tree
or trees to which the operation applies.

The vertices of S are represented by dynamic tree nodes with cost -co.
Similarly, the vertices of S* are represented by dynamic tree nodes with
cost +oo. In T the operation find max is used, while in T* the operation
find min is used. The roots of T and T" are chosen arbitrarily. For every
edge e there is a dynamic tree node of cost w(e). If e is a spanning edge
of T then there is an edge between the tree node representing the vertex
orig(eo) and , and an edge between 6 and the tree node for orig(e2).
Conversely, if es is a spanning edge of T*, then tree edges join orig(el) to
6, and to orig(e3). Thus e is represented by two edges connected through
the degree-two node 6. This representation allows find max and find min
on T and T* respectively to return edges rather than vertices.

For each edge e, the five values of 6 and orig(ei), 0 < i < 3, are stored
in the form of pointers to the corresponding dynamic tree nodes. If the
subdivision has O(m) edges the number of vertices and faces is also O(m),
and so the total space required for the trees is O(m).

To process change weight(e, A), we first update the edge weight by
executing evert(6) and add cost(, A). Four cases can occur:

1. e is in T and A is negative.

2. e is not in T (e* is in T*) and A is positive.

3. e is not in T and A is negative.

4. e is in T and A is positive.

Clearly, Cases 1 and 2 have no effect on the spanning trees. Now con-
sider Case 3. It is well-known (e.g. see [11,30]) that in this case T is no
longer minimum if the weight of e is less than the weight of the maximum-
cost edge d in the cycle formed by adding e to T. We can find d by
executing evert(orig(eo)) followed by find max(orig(e2)). In the special
case where the find max operation returns -co, processing terminates im-
mediately. This case occurs when orig(eo) =orig(e2); that is, e is a loop
edge that can never be a spanning edge, while the dual edge e* is a bridge
of G* that must always be a spanning edge.

10

In any case, if w(e) >_ w(d), no action need be taken. If not, however,
then the new minimum spanning tree T is given by deleting edge d and
inserting edge e. Simultaneously, the new maximum spanning tree T* is
given by deleting edge e* and inserting edge d*. This is done by executing
the following operations:

evert(orig(do)); cut(d); cut(orig(d2));
evert(orig(e)); cut(); cut(orig(ea));

followed by:

evert(orig(eo)); link(,orig(eo)); link(orig(e2), 6);
evert(orig(di)); link(d, orig(d)); link(orig(d3), d);

Since only a constant number of links, cuts and everts are required the
amortized time for the change weight operation is O(log m).

Now we consider Case 4. Let (VI, V2) be a partition of the vertices of G.
The cut induced by (17, 2) is the set of edges of G with one endpoint in V
and the other i. 1,"2. Again, it is well-known that, in Case 4, T is no longer
minimum if the weight of e is greater than the weight of the minimum-cost
edge in the cut induced by the partition ("1', V2), where V1 and V2 are the
vertex sets of the connected components of T created by the removal of edge
e. Given only the primal tree, this cut edge is hard to find. The utility
of the dual spanning tree becomes clear, however, when it is observed that
Case 4 is the equivalent in the dual tree of Case 3 in the primal tree. A dual
edge not in T* has increased in cost, and may therefore force a dual edge
out of T*. The same processing as in Case 3 can be applied, interchanging
the role of dual and primal tree, and using find min rather than find max.
Thus Case 4 can also be handled in amortized time O(log in).

Theorem 1 [12] Let S be a subdivision of the plane undergoing on-line
changes in edge weight. The minimum spanning tree of S can be maintained
in O(log m) amortized time per operation and O(m) space, where m is the
number of edges.

The time bound can be made worst-case with the biased tree implemen-
tation of the dynamic tree data structure [26].

11

Let G be a planar graph of n vertices (and hence O(n) edges) undergoing
changes in edge weight. An embedding can be generated in O(n) time using
one of the algorithms of Hopcroft and Tarjan [17] or Booth and Lueker [4]
(see Chiba, Nishizeki, Abe, and Ozawa [6]). Each connected component
gives rise to a planar subdivision. The initial spanning trees can be found
in O(n) time with the algorithm of Cheriton and Tarjan [5]. Thus, given
O(n) preprocessing time, we can maintain the minimum spanning forest of
G in O(log n) amortized time per operation and O(n) space.

4 Subdivisions Undergoing Structure Mod-
ifications

In this section we discuss the implementation of dynamic operations that
affect the structure of planar subdivisions. Following Guibas and Stolfi
[14], we supply two modification primitives, make edge, which increases
the complexity of the structure by adding new unconnected vertices and
edges, and splice, which changes the topology of the structure but does not
increase its complexity. The primitives are very flexible and can be used to
build more complicated dynamic operations, such as contraction along an
edge.

In general, we maintain a collection of subdivisions and their duals.
Each subdivision is thought of as lying in a distinct plane. The make edge
primitive, which takes no parameter, creates two new vertices connected by
a new single edge e. The edge and its endpoints form a new subdivision that
is embedded along with its dual in a new plane. The make edge primitive
returns the directed edge e0 . The inverse operation, destroy edge(e), takes
as an argument an edge that is guaranteed to be disconnected. The edge
is destroyed and the storage is released.

The second primitive is splice(d, e), where d and e are directed edges of
the primal subdivision. Splice operates on the vertices orig(d) and orig(e),
and independently on the dual vertices corresponding to the left faces of d
and e, which are given by orig(rot-'(d)) and orig(rot-1 (e)). If the edges
originate in the same vertex, then the splice operation splits that vertex in
two, with the edges clockwise from d to e going to one of the halves, while
the remaining edges go to the other. If the edges have different origins,

12

Aa Aa

x x

bb '

(a) (b)

Figure 3: a) Example of edge rings. Primal vertices u
and v lie on the boundary of face f. b) Edge rings and
topology produced by executing splice(a, b) (or equivalently,
splice(x, y)) on edge rings of (a).

then the two vertices are combined into one by inserting the edge ring of
one vertex into the edge ring of the other. Figure 3 gives an example. Let
6 = rot(next(d)) and e = rot(next(e)). The splice simply exchanges the
values of next(d) and next(e), while simultaneously exchanging the values
of next(6) and next(e).

The values given by the next, orig, and rot operators determine inci-
dence relations between the faces, edges, and vertices of S. In turn, these
incidence relations determine the topology of the surface that S subdivides.
Since splice(d, e) changes the values of next(d) and next(e), the choice of
d and e is restricted by the requirement that the result of the splice remain
a subdivision of the plane. Any splice is allowed in which d and e have
the same origin or left face, because the splitting of a vertex in either the

13

primal or dual preserves planarity, and if one subdivision remains planar
then its dual must also remain planar. If both the origins and the left faces
differ, however, and the two edges are contained in the same subdivision,
then the splice is disallowed. Such a splice increases by one the genus of
the surface that S subdivides. On the other hand, if the edges lie in dif-
ferent subdivisions, i.e. different planes, the splice is allowed. In this case,
the splice merges the two subdivisions so that they are contained in a sin-
gle surface. Given S, it is always possible to draw a subdivision that is
topologically equivalent to S but in which some specified edge or vertex is
adjacent to the exterior face. Thus the splice of edges contained in different
subdivisions can be thought of as redrawing the subdivisions to place the
edges on the exteriors, and then plugging the subdivisions together at the
origins of these edges. The validity of a splice or destroy edge operation can
be tested using the data structure we present in the next section.

Let S be a subdivision containing m edges. Any undirected edge e
can be deleted from S by taking one of its directed versions e and ex-
ecuting splice(e, next- (e)) and splice(sym(e), next-' (sym(e))), followed
by destroy edge(e). Thus a sequence of 0(m) splices and destroy edges re-
duces S to the null subdivision. Since splice is reversible (in fact, splice
is its own inverse), we may conclude that the operations make edge and
splice are sufficient to generate any planar subdivision not consisting of
a single isolated vertex. Furthermore, we see how to use make edge and
splice to implement more complicated dynamic operations. For example,
the operation insert edge(d, e), which inserts an edge between orig(d) and
orig(e), dividing the face to the left of d and e, can be implemented by
x =make edge followed by splice(d, x) and splice(e, sym(x)). We can simi-
larly implement other standard operations such as delete edge, expand, and
contract (see [29]).

Let G denote the planar multigraph induced by the vertices and edges
of a collection of subdivisions. Each subdivision induces a connected com-
ponent of G. We may use make edge and splice to generate any multigraph
G not containing isolated vertices. (New vertices are always created by
make edge in pairs, connected by the new edge. If one wishes to allow
isolated vertices, they can very easily be handled.) We note that while a
particular subdivision may embed a given planar graph G, this embedding
is not necessarily unique, and a situation may occur in which an edge can-
not legally be inserted into the subdivision, even though G with the new

14

edge remains planar.

5 Edge-ordered Trees and a Fully Dynamic
Algorithm

In this section we develop the edge-ordered dynamic tree, a data structure
designed to handle splices and the resultant cutting and linking of edge rings
efficiently. An edge-ordered tree is a general rooted tree in which a total
order is imposed on the edges adjacent to each given node (including the
parent edge). The ordered set of edges adjacent to node v is called the edge
list for v. For example, in our application we will use the counterclockwise
ordering of the edges around the vertex in the current graph embedding,
with an arbitrary edge first. Each node v in the tree has a real-valued
cost, cost(v). The edge-ordered tree supports the following collection of
operations (we use capitals to distinguish them from the corresponding
dynamic tree operations):

Link(v, w): Add an edge e from v to w, thereby making v a child of w in
the forest (v is assumed to be a root). The new edge is inserted at the end
of the edge list of v and at the front of the edge list of w. Return e.

Split(v, e): Split node v into two nodes v', v". If aefl is the ordered list of
edges adjacent to v then ae becomes the ordered list of edges adjacent to
v', while 0 becomes the ordered list adjacent to v". Nodes v' and v" have
the same cost as v.

Merge(u, v): Merge nodes u and v into a single node w. If a is the ordered
list of edges for u and / is the ordered list of edges for v then a# is the
ordered list of edges for w. Nodes u and v must have the same initial cost.
Return w.

Cycle(v, e): Cyclically permute the order of edges adjacent to v so that e
is the last edge in the order. The initial ordered list aef becomes 8ae.

Add cost(v, x): Add real value x to cost(v). Note that this differs from
the definition of add cost in [26,27], since only node v is affected by the
operation.

15

The edge-ordered tree data structure also supports Evert(v), Cut(v),
Find cost(v), Find root(v), Find min(v) (Find max(v)), Find parent(v), and
Find Ica(u, v). These operations have the same definitions as the analogous
(lower-case) operations that we defined in Section 3.

To implement the edge-ordered tree we do not create a completely new
data structure; rather, we show how to transform any given tree T into a
new tree T'. Each node v of T is expanded into a collection of subnodes
called a node path. Each subnode s has a cost that is always set equal to
cost(v). There is one subnode in the node path v for every edge e in the edge
list of v. The subnode for e is connected by tree edges to the subnodes of its
predecessor and successor in the edge list. The subnodes for the first and
last edges in the list are connected only to their successor and predecessor
respectively. For each vertex v there is an auxiliary block of storage that
contains pointers to the first and last subnodes, denoted vji7 5 j and viast. We
assume the existence of routines Make node and Destroy node(v) that create
and destroy this auxiliary storage. A node is referenced by a pointer to this
storage block. Whenever an edge e connects nodes u and v in T, there is
an edge in T' between the two subnodes s, and s, generated by e in the
node paths of u and v. Edge e is referenced by one of its endpoints {su, sV
as appropriate. Thus, to split node v at edge e, we execute Split(v, s,).

If T has n nodes and hence n - 1 edges, then T' has 2n - 2 nodes.
Note that every node in T' has degree at most three. Essentially the same
idea has been used by Goldberg, Grigoriadis and Tarjan [13] in another
extension of dynamic trees that supports computing minima and maxima
over subtrees. Figure 4 gives an example of an edge-ordered tree.

The transformed tree T' is maintained with a standard Sleator-Tarjan
dynamic tree. The node path for node v has the property that if evert(vjat)
is performed, then the ordered sequence of nodes on the tree path between
Vf irut and Vlast corresponds exactly to the ordered sequence of edges in
the edge list from first to last. This property allows the processing of all
the edge-ordered tree operations with only a constant number of dynamic
tree operations. If we only need to perform the operations Link through
Find cost, the dynamic tree suffices. To perform Cut, the node paths
must also be threaded into a doubly-linked list, and to perform Find min,
Find parent, Find Ica, and Find root auxiliary balanced trees are required.
We begin by giving implementations of the edge-ordered tree operations in

16

() __(b)

Figure 4: (a) Edge-ordered tree - the actual tree. Edge list
for vertex 1 is: (1,2),(1,3),(1,4),(1,5). Edge list for vertex 3
is: (3,6),(3,7),(3,1),(3,8). (b) Tree of (a) transformed into
node path representation. Dark edges correspond to true
tree edges.

17

the first group. For convenience, we will use the notation e to represent
both an edge and the appropriate corresponding tree subnode.

Link(u, v) begin
x :=make node; y :=make node;
evert(u0 8 e);link(uja ,,); link(x,y); link(y, f,,o,);
Ulast := X; Vjirst := Y;

return x,y;
end

Split(u, e) begin
v :=Make node; w :=Maie node;
evert(ulsta);

if find lea(uf jst, e) e then error (e not in node path of v);
y := findparent(e);
cut(e);
Vfirst := Ufirst; Vast := e;
Wfirs t :=Y; Wlast := Ulast;

Destroy node(u);
return v, u,;

end

Merge(u, v) begin
w :=Make node;
evert(ulat);
link(urn,.i Vf irst);

Wfirst := Ufirst; Wlast := Vlast;
Destroy node(u); Destroy node(v);
return w;

end

18

Cycle(v, e) begin
evert(v0 ,t);
if find lca(u i,,t,e)5 e then error (e not in node path of v);
if e = vjast then return;
x :=find parent(e);
cut(e);
link(Viast, vjiit);

Vfirst := X; Vlast := e;

end

Add cost(v, A) begin
evert(vast);

add cost(v1 ir~t, A);
end

The operations Evert(v) and Find cost(v) are simply implemented by
evert(vlt) and find cost(vpast), respectively. If the tree is to be rooted at
node r, then those operations whose implementation uses an evert must be
followed by a final evert(r,,g).

If the operation Cut(v) is needed, we thread each node path into a
circular doubly-linked list. We denote the predecessor and successor of
subnode s by pred(s) and succ(s).

Cut(v) begin
x find lca(vfirt, viast);

y find parent(x);
cut(x);
for s in {x,y} do begin

evert(succ(s)); cut(s);
cut(pred(s)); link(pred(s),succ(s));
succ(pred(s)) := succ(s); pred(succ(s)) pred(s);

end
end

Note that in order to maintain the node path linked lists, each link
or cut that occurs in the implementation of the first group of operations
must be followed by the appropriate operation on the linked list. After the

19

edge is cut, the storage used by the two subnodes x, y, which are no longer
needed, is reclaimed.

To include Find min(v), Find parent(v), Find lca(u, v), and Find root(v)
in the repertoire of edge-ordered tree operations, we need the operation
Find node(s), which given subnode s returns the node v whose node path
contains s. By maintaining each node path in an auxiliary balanced binary
tree such as a red-black tree or splay tree (see (31, pp. 45-53]), Find node(s)
can be performed in O(log n) time, either worst-case or amortized, depend-
ing on the choice of data structure. Again, appropriate insertions, deletions,
splits and concatenations must be done in the auxiliary data structure when
operations such as link or cut occur in the implementation of the first group
of tree operations. The balanced trees mentioned above support insertions,
deletions, splits, and concatenations in O(log n) time.

Using Find node, we implement the remaining operations as follows:

Find min(v) begin
return Find node(find min(vj,,t)); end

Find parent(v) begin
return Find node(find parent(find Ica(vjrt,vi 8ast))); end

Find lca(u, v) begin
return Find node(find lca(u first, vf/ ,t)); end

Find root(v) begin
return Find node(find root(vlat)); end

Since each edge-ordered tree operation is implemented using a constant
number of dynamic tree operations, the overall amortized running time per
operation remains O(logn).

We now discuss the application of edge-ordered trees to the minimum
spanning tree maintenance problem. Let G denote the multigraph induced
by the vertices and edges of a collection of subdivisions, and let G" denote
the multigraph given by their duals. As in Section 3, the vertices of G are

20

represented by tree nodes of cost -oo and the vertices of G* by nodes of
cost +00.

We wish to ensure that each directed edge e is represented in the edge
list of the node v = orig(e). To do this, we create a dummy node of cost
w(e), and make it a child of v. With e we store the pair of subnodes that
represent e in the node paths of v and 6. This allows the use of Find node
to determine orig(e) and . The counterclockwise order of directed edges
around v determines the linear order in the edge list of v; the first edge in
the linear order is chosen arbitrarily.

If e is a spanning edge of G then the dummy nodes for e0 and e2
are merged to give a degree-two node representing e that connects nodes
u = orig(eo) and v = orig(e2). Similarly, if e* is a spanning edge of G*,
then the dummy nodes for el and e3 are merged. There are 0(m) tree
nodes, so the total space required is 0(m). Note that each loop edge gives
rise to two sibling dummy nodes, one for each directed version of the loop.
Figure 5 gives an example of a node path.

The algorithm given in Section 3 for change weight operations can be
adapted for use with edge-ordered trees. If non-spanning primal edge e
decreases in weight, we find the edge d of maximum weight on the path con-
necting the endpoints of e by executing Evert(orig(eo)) and Find max(orig(e2)).
Edge d is represented in T by a degree-two node u with incident edges corre-
sponding to do and d2 . To replace edge d by edge e in the primal spanning
tree, we perform Split(u, Ufirst) followed by Merge(6o, 2). Similarly, we

split the node w representing es in T*, then merge di and d3 .
A make edge request creates two new vertices in the primal graph, con-

nected by a new edge e with w(e) = -oo. Simultaneously, the dual graph
is augmented by a single vertex with the incident loop edge e*. The primal
edge e is automatically a spanning edge of G. To satisfy the request, the
algorithm allocates storage for a new primal/dual spanning tree pair. The
primal tree T consists of two singleton node paths connected through a
node that is the merge of 60 and 62. The dual tree T* consists of a node
path containing two subnodes, with children 61 and 63. (See Figure 6.)

A splice(d, e) operation has more complicated behavior. The most
complex situation occurs when directed edges d and e have distinct ori-
gins but the same left face (or symmetrically, the same origin but distinct
left faces.) Let b and e be the dual directed edges given by rot(next(d))

21

(a) (b)

Figure 5: a) Node path for vertex d of the spanning tree of
Figure 2. Each subnode is labelled by the vertex to which it
is adjacent. Unlabelled squares are &i nodes. b) Node path
for d after executing Cycle(d, e), where e {d, a}.

22

V

(a) U (b)

Figure 6: a) Primal (black) and dual (grey) subdivisions
produced by e =make edge. b) Primal and dual edge-ordered
trees for subdivisions of (a).

and rot(next(e)) respectively. Combining the vertices u = orig(d) and
v = orig(e) into a single vertex will create a cycle in the primal spanning
tree. This cycle is broken by removing the edge x of maximum weight on
the cycle. The algorithm for processing a change weight request can be used
to find x. Splitting of the face f = orig(b) = orig(e) breaks T* into two
fragments. They axe then joined together by linking in the edge x*. Thus
the tree modifications caused by the splice are equivalent to those occurring
if initially the two vertices had been joined by an edge that changed weight
from +oo to -oo. The specific processing is as follows:

1. As discussed above, find x and perform Split(x, xirst). This breaks
T into two fragments.

2. Reconnect the two fragments of T with Cycle(u, d), Cycle(v, e), and
Merge(u, v).

3. Perform Cycle(f, 6) and Split(f, e).

4. Reconnect the two fragments of T* with Merge(il , i 3).

23

The processing for the other cases of splice(d, e) is simpler. If both edges
have the same origin v and left face f, then v is an articulation point of G.
The splice breaks one subdivision into two subdivisions of distinct surfaces
and correspondingly breaks one component of G into two components. The
two fragments into which T is broken by the splice remain valid minimum
spanning trees for the new components, since T previously spanned the
entire graph, and the fragments were connected only through v. Therefore
we need only execute the cycle and split of Step 3 above, once on the primal
edges and vertex d, e, and v, and once on the dual edges and face 6, E, and

f.
Similarly, if the edges belong to different components, and hence dif-

ferent subdivisions of distinct surfaces, then the splice operation joins the
components through a new articulation vertex w given by the merge of
u = orig(d) and v = orig(e). The two dual components are simultaneously
joined through a vertex h given by the merge of f = orig(6) and g = orig(f).
By assumption, the two initial components are correctly spanned, so by
combining the two vertices a valid minimum spanning tree for the unified
graph is created. Therefore, in this case we need only execute the cycles
and merge of Step 2, once on u, v, d and e, and once on f, g, 6 and E.

The make edge operation requires constant time, while each splice per-
forms a constant number of edge-ordered tree operations, each of which
requires O(log m) amortized time per operation, where m is the number of
edges in the subdivision.

Theorem 2 The minimum spanning tree of a planar subdivision undergo-
ing both changes in edge weight and changes to its structure can be main-
tained in 0(log m) amortized time per operation and 0(m) space.

Again, the time bound can be made worst-case by using the biased-tree
implementation of dynamic trees [26].

We note that, given a minimum spanning tree, we can answer connectiv-
ity queries, such as find(u, v), which asks if vertices u and v are in the same
component of G, by taking representative subnodes in the vertex paths for
u and v and finding the roots of the spanning trees containing them. (This
query can be used to check the validity of splice operations.)

The data structure we have presented encodes the entire structure of
the subdivisions. The entire range of dynamic tree operations described

24

above and in references [26,27] is available for use with the spanning trees,
making the overall data structure quite powerful and flexible.

6 Remarks

In implementing edge-ordered tree operations we used balanced trees as
auxiliary data structures to maintain the node paths while performing splits
and merges. These auxiliary data structures are used primarily to answer
find node queries in logarithmic time. In fact, Sleator-Tarjan dynamic
trees may also be used as the auxiliary data structures, with each edge
list maintained as a linear branch always rooted at the head node. This
suggests that it may be possible to combine the auxiliary functions into the
primary dynamic tree and eliminate the auxiliary data structures entirely.
We are currently unable to do so, however.

We have assumed that all modification operations are specified by edges.
Tamassia [29] gives a data structure for maintaining a dynamic embedding
of a biconnected planar graph that can test in O(log n) time whether two
vertices u and v lie on a common face. With this auxiliary data structure
we can allow modifications to be specified in terms of vertices. For example,
we can support insert edge(u, v), which inserts an edge between vertices u
and v if they lie on a common face, by using Tamassia's data structure to
find the two edges that are adjacent to a common face and have as origins
u and v respectively. These edges can then be used as input to splice.

Our planar subdivision algorithms can be used to maintain planar graphs,
but the modifications permitted are limited by the embedding. Even if one
planar graph G1 can be derived from another G2 by a single edge addition,
a large number of modifications to the subdivision that embeds G1 may be
required to build a subdivision that embeds G2. In many applications of
dynamic planar graphs, such as vision or chip design, a subdivision of the
plane is the basis for the generation of all operations, so a subdivision-based
algorithm is not a liability. From a theoretical point of view, however, it
would be more satisfying to have an algorithm that allowed the following
operations: insert a new vertex; delete a disconnected vertex; delete an
edge; and insert an edge if the resultant graph remains planar. If such
an algorithm were based on the primal/dual spanning tree relationship,
however, then it would need to move quickly (i.e., in O(log n) amortized

25

time) between topologically distinct embeddings. In recent work Di Bat-
tista and Tamassia [2,31 give data structures and algorithms that can do
this in O(log n) time in the restricted case that only edge insertions are al-
lowed. If a modification primitive powerful enough to allow edge deletions
is allowed, however, the problem becomes significantly more difficult, and
currently no solution better than repeated application of a static planarity-
testing algorithm is known.

References

[1] G. Ausiello, G. F. Italiano, A. M. Spaccamela, and U. Nanni. Incre-
mental algorithms for minimal length paths. In Proc. 1st A CM-SIAM
Symp. on Discrete Algorithms, 1990.

[2] G. D. Battista and R. Tamassia. Incremental planarity testing. In
Proc. 30th IEEE Symp. on Foundations of Computer Science, pages
436-441, 1989.

[3] G. D. Battista and R. Tamassia. On-line planarity testing. Technical
Report CS-89-31, Department of Computer Science, Brown University,
1989.

[4] K. Booth and G. Lueker. Testing for the consecutive ones property,
interval graphs, and graph planarity using PQ-tree algorithms. J.
Comput. System Sci., 13:335-379, 1976.

[5] D. Cheriton and R. E. Tarjan. Finding minimum spanning trees.
SIAM J. Comput., 5:724-742, 1976.

[6] N. Chiba, T. Nishizeki, S. Abe, and T. Ozawa. A linear algorithm
for embedding planar graphs using PQ-trees. J. Comput. System Sci.,
30:54-76, 1985.

[7] F. Chin and D. Houck. Algorithms for updating minimum spanning
trees. J. Comput. System Sci., 16:333-344, 1978.

[8] H. Edelsbrunner, L. J. Guibas, and J. Stolfi. Optimal point location
in a monotone subdivision. SIAM J. Comput., 15:317-340, 1986.

26

[9] S. Even and H. Gazit. Updating distances in dynamic graphs. Methods
of Operations Research, 49:371-387, 1985.

[10] S. Even and Y. Shiloach. An on-line edge deletion problem. J. Assoc.
Comput. Mach., 28:1-4, 1981.

[11] G. N. Frederickson. Data structures for on-line updating of mini-
mum spanning trees, with applications. SIAM J. Comput., 14:781-
798, 1985.

[12] H. N. Gabow and M. Stallmann. Efficient algorithms for graphic ma-
troid intersection and parity (extended abstract). In Automata, Lan-
guages, and Programming, 12 th Colloquium, Lecture Notes in Com-
puter Science, vol. 194, pages 210-220. Springer-Verlag, Berlin, 1985.

[13] A. V. Goldberg, M. D. Grigoriadis, and R. E. Tarjan. Use of dynamic
trees in a network simplex algorithm for the maximum flow problem.
Math. Prog., to appear.

[14] L. J. Guibas and J. Stolfi. Primitives for the manipulation of general
subdivisions and the computation of voronoi diagrams. A CM Trans.
on Graphics, 4:74-123, 1985.

[15] F. Harary. Graph Theory. Addison-Wesley, Reading, MA., 1972.

[16] D. Harel. On-line maintenance of the connected components of dy-
namic graphs. Unpublished manuscript, 1982.

[17] J. Hopcroft and R. E. Tarjan. Efficient planarity testing. J. Assoc.
Comput. Mach., 21:549-568, 1974.

[18] T. Ibaraki and N. Katoh. On-line computation of transitive closure
for graphs. Inform. Process. Lett., 16:95-97, 1983.

[19] G. F. Italiano. Amortized efficiency of a path retrieval data structure.
Theoret. Comput. Sci., 48:273-281, 1986.

[20] G. F. Italiano. Finding paths and deleting edges in directed acyclic
graphs. Inform. Process. Lett., 28:5-11, 1988.

27

[21] G. F. Italiano, A. M. Spaccamela, and U. Nanni. Dynamic data struc-
tures for series parallel digraphs. In Proc. Workshop on Algorithms and
Data Structures, (WADS 89), Lecture Notes in Computer Science, vol.
382, pages 352-372. Springer-Verlag, Berlin, 1989.

[22] J. A. L. Poutr6 and J. van Leeuwen. Maintenance of transitive closure
and transitive reduction of graphs. In Proc. International Workshop
on Graph- Theoretic Concepts in Computer Science, (WG 87), Lecture
Notes in Computer Science, vol. 314, pages 106-120. Springer-Verlag,
Berlin, 1988.

[23] F. P. Preparata and R. Tamassia. Fully dynamic techniques for point
location and transitive closure in planar structures. In Proc. 29th IEEE
Symp. on Foundations of Computer Science, pages 558-567, 1988.

[24] J. H. Reif. A topological approach to dynamic graph connectivity.
Inform. Process. Lett., 25:65-70, 1987.

[25] H. Rohnert. A dynamization of the all pairs least cost path problem. In
Proc. 2nd Annual Symp. on Theoretical Aspects of Computer Science,
(STACS 85), Lecture Notes in Computer Science, vol. 182, pages 279-
286. Springer-Verlag, Berlin, 1985.

[26) D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees.
J. Comput. System Sci., 26:362-391, 1983.

[27] D. D. Sleator and R. E. Tarjan. Self-adjusting binary search trees. J.
Assoc. Comput. Mach., 32:652-686, 1985.

[28] P. M. Spira and A. Pan. On finding and updating spanning trees and
shortest paths. SIAM J. Comput., 4:375-380, 1975.

[29] R. Tamassia. A dynamic data structure for planar graph embedding.
In Proc. 15th Int. Conf. on Automata, Languages, and Programming,
(ICALP 1988), Lecture Notes in Computer Science, vol. 317, pages
576-590. Springer-Verlag, Berlin, 1988.

[30] R. E. Tarjan. Sensitivity analysis of minimum spanning trees and
shortest path trees. Inform. Process. Lett., 14:30-33, 1982.

28

[31) R. E. Tarjan. Data Structures and Network Algorithms. Society for
Industrial and Applied Mathematics, Philadelphia, PA., 1983.

[32] R. E. Tarjan. Amortized computational complexity. SIAM J. Alg.
Disc. Meth., 6:306-318, 1985.

[33] D. Yellin. A dynamic transitive closure algorithm. Technical report,
IBM Research Division, T. J. Watson Research Center, Yorktown
Heights, NY, 1988.

29

